Mark Scheme (Results)
Summer 2015

Pearson Edexcel International GCSE Physics (4PH0) Paper 1PR

Pearson Edexcel International GCSE Science Double Award (4SC0) Paper 1PR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education.
Find out more about how we can help you and your students at:
www.pearson.com/uk

Summer 2015
Publications Code UG042405
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	any 3 of: MP1. neutron absorbed by (U) nucleus; MP2. (U nucleus) splits; MP3. (producing 2) daughter nuclei; MP4. extra neutrons released;	accept collides with/hits/bombards/eq n for neutron condone breaks up must be plural reject 'daughter cells' for MP3 must be plural	3
(b)	kinetic (energy)	accept phonetic spellings e.g. 'kenetic'	1

Total 4 marks

Question number	Answer	Notes	Marks
2 (a)	any 2 of: MP1. so that lamps work independently; MP2. so that they all get mains/same voltage/230V; MP3. so that different areas/rooms can have different brightness/power/light intensities of lamps;	so that can light some rooms without all being on or off/each lamp has its own switch/if 1 lamp blows the others will still work allow no reduction in light output for main voltage allow different currents	2
(b)	D 1.38 A;		1
(c)	any 3 of: MP1. current increases over max value of fuse; MP2. fuse wire melts; MP3. cuts off current; MP4. prevents wire(s) in circuit from overheating;	allow current gets too high blows/breaks breaks circuit ignore 'stops electricity' ignore electric shocks	3
(d) (i)	power = voltage \times current	allow in standard symbols or in words	1
(ii)	substitution into correct equation; evaluation; e.g. 0.26×230 $60 \text { (W) }$	allow 240 V for mains but not incorrect current (62.4 W) allow 59.8 (W) condone $317(.4$ (W) for 1 mark	2
(iii)	```answer from (d)(ii) x 180 ; evaluation; unit; e.g. 60 X 180 11000 joules/J```	accept correct use of $\mathrm{E}=\mathrm{V} \mathrm{xIxt}$ allow ecf from (d)(ii) mark independently allow 10800, 10764	3

2 (e) (i)	S position S $_{2}$ position lamp is lit W X $(\mathrm{yes}) \vee$ W Y $(\mathrm{no}) \times$ Z X $(\mathrm{no}) \times$ Z Y $(\mathrm{yes}) \checkmark$ any three correct; all 4 correct;;	allow 1 mark when middle two rows blank, but otherwise correct allow 1 mark when top and bottom rows blank but otherwise correct	2
(ii)	any sensible suggestion of 2 way switching; e.g. on a corridor on stairs basement/cellar bedroom/kitchen light room with 2 doorways	allow clear description of 2 switches controlling the same light	1

Total 15 marks

Question number	Answer	Notes	Marks
3 (a) (i)	D refraction;		1
(ii)	any 2 of: MP1. waves slow down; MP2. waves change direction/bend/angle; MP3. wavelength decreases;	allow 'light' for waves do not allow 'curved' allow wavefronts closer together	2
(b) (i)	line at 90° to the surface at point of contact;	judge by eye label not required	1
(ii)	angle between normal and incident ray clearly indicated;	allow ecf from normal line drawn in (b)(i) allow measured value in degrees	1

Total 5 marks

Question number	Answer	Notes	Marks
4 (a) (i)	C (ultra violet);		1
(ii)	A (longitudinal);		1
(iii)	C (internal structure of objects);		1
(b) (i)	any sensible use further detail e.g. sterilising medical equipment; gamma kills bacteria; OR treating cancer/mutates cancer cells; radiotherapy/focused gamma rays; OR detecting cancer; PET scanner/(radioactive) tracers/gamma camera;	ignore CT scan, CAT scan, MRI scan allow kills cancer/cells allow scintillation counter	2
(ii)	any 2 of: MP1. any one sensible comment about risk for either; e.g. increased risk of cancer/mutation of cells damage to neighbouring/good/healthy cells MP2. a further detail of the risk; e.g. radiation is ionising gamma has high/highest energy MP3. statement about the relative risk/exposure of doctor or patient; e.g. patient is only exposed for a short period of time doctor has continual (low level) exposure		2
(iii)	any one sensible method; e.g. (use for a) limited time idea of working at a distance/in another room	ignore protective clothing, lead shielding, lead apron etc.	1

Question number	Answer	Notes	Marks
5 (a) (i)	weight (of toy car);	allow mass	1
(ii)	speed (of toy car);	allow: velocity time (to go down the slope)	1
(b)	any 2 of: MP1. angle/gradient/incline/steepness/height of slope; MP2. same car/eq; MP3. surface of slope; MP4. force at launch; MP5. initial speed; MP6. starting height/position/point (of car); MP7. distance travelled/length of slope;	ignore weather conditions	2
(c)	battery joulemeter micrometer \checkmark newtonmeter (\checkmark) ruler \checkmark stopwatch thermometer one correct tick; two correct ticks;	allow clear alternative indications e.g. - crosses - shading if more than 2 ticks, -1 for each incorrect tick	2

Question number	Answer	Notes		Marks
6 (a)	mark each of these independently: MP1. a resistor in series with the lamp only; MP2. a second lamp in parallel with the first lamp; MP3. a voltmeter that measures the voltage across the resistor; MP4. an ammeter that measures the total current in the circuit;	circuit symbols used must be correct (no square voltmeter/ammeter etc.)		4
(b) (i)	labels on axes including units; scales on axes; plotting;;	axes can be either way round must occupy $>50 \%$ in each direction -1 for each error		4
(ii)	$\mathrm{I}=0.4, \mathrm{~V}=4.5$ clearly indicated;			1
(iii)	Suitable line of best fit; Curvent (A)	Voltage in \mathbf{V} 1.0 2.5 3.0 4.5 5.0 6.0	Current in A 0.10 0.25 0.30 0.40 0.50 0.60	1
(iv)	voltage = current \times resistance;	in words or sta	ard symbols	1
(v)	substitution into correct equation using any suitable pair of values taken from the graph line or table; evaluation of $\mathrm{R}=10(\Omega)$;	allow (0.1,1),	6,6) etc	2

Total 13 marks

Question number	Answer	Notes	Marks
7 (a) (i)	force = mass x acceleration;	in words or in accepted symbols e.g. $\mathrm{F}=\mathrm{ma}$	1
(ii)	substitution; evaluation; e.g. 38×1.5 57 (N)	$57000(\mathrm{~N})$ scores 1 mark	2
(iii)	any suitable suggestion; e.g. friction between snow/ground and sledge ground is not level towing rope/direction at an angle to the ground/direction of movement	allow air resistance/drag	1
(b) (i)	$\text { acceleration }=\frac{\text { change in velocity; }}{\text { time (taken) }}$	in words or in accepted symbols e.g. $\begin{aligned} & a=\frac{\Delta v}{t} \\ & a=\frac{v-u}{t} \end{aligned}$ not ' s ' for ' v '	1
(ii)	working must be shown rearrangement of equation OR substitution; evaluation to at least 2 SF ; $\begin{aligned} & \text { e.g. } \\ & \mathrm{t}=\frac{2.8}{1.5} \\ & =1.9(\mathrm{~s}) \end{aligned}$	Calculation of velocity or acceleration scores 1 mark max. allow 1.87 no unit required	2

(c) (i)	MP1. statement of total distance $=$ area under graph; MP2. any 1 correct distance for a segment of journey; e.g. calculation of distance during acceleration $(1 / 2 \times 3.25 \times 2.5=4.1 \mathrm{~m})$ calculation of distance during constant speed $(3.25 \times 8=26 \mathrm{~m})$ calculation of distance during deceleration $(1 / 2 \times 3.25 \times 4=6.5 \mathrm{~m})$ MP3. correct total distance $36.6(\mathrm{~m})$;	may be assumed by an attempt at sum o the areas allow range of 36-37 (m)	3
(ii)	$\text { (average) speed }=\frac{\text { distance (moved) }}{\text { time (taken) }}$	in words or in accepted symbols e.g. $\mathrm{v}=\mathrm{s} / \mathrm{t}$ condone $\mathrm{s}=\mathrm{d} / \mathrm{t}$	1
(iii)	substitution; evaluation; e.g. 36.6/14.5 $2.52(\mathrm{~m} / \mathrm{s})$	allow ecf from (c)(i) for distance ignore s.f. allow answers that round to 2.5 or 2.6 (m / s)	2

Question number	Answer	Notes	Marks
8 (a) (i)	$-273\left({ }^{\circ} \mathrm{C}\right)$		1
(ii)	any 3 of: MP1. idea of (continuous) random motion; MP2. collide/impacts/eq; MP3. with walls (of container); MP4. idea that force is produced (by bombarding molecules); MP5. idea of pressure as force on an area;	bombard, hit, impact upon allow Newton's $2^{\text {nd }}$ Law momentum argument $\mathrm{p}=\mathrm{F} / \mathrm{A}$	3
(b) (i)	pressure $=$ density $\times \mathrm{g} \times$ height;	in words or accepted symbols e.g. $\mathrm{p}=\mathrm{\rho gh}$ not 'gravity' for g	1
(ii)	use of correct pressure; substitution; rearrangement; evaluation; $\begin{aligned} & \text { e.g. } \\ & 104-100=4 \mathrm{kPa} \\ & 4000=1000 \times 10 \times \mathrm{h} \\ & \mathrm{~h}=4000 /(1000 \times 10) \\ & 0.4(\mathrm{~m}) \end{aligned}$	sub and rearrange in either order deduct 1 mark for each of the following: - conversion error from kPa to Pa - use of wrong pressure e.g. use of 104 or 100 kPa and not changing to Pa gets 2 marks max	4

Total 9 marks

Question number	Answer	Notes	Marks
9 (a) (i)	MP1. minimum of 3 straight lines evenly spaced (by eye); MP2. at least one arrow showing direction from N to S;	ignore field outside the rectangle defined by the magnets	2
(b) (i)	any sensible suggestion; e.g. otherwise large heat loss/overheating thin wire would melt to reduce the resistance so it does not sag/bend/eq		1
(ii)	any 3 of: MP1. magnetic field of wire/current; MP2. interacts with; MP3. magnetic field of (2) magnets; MP4. Fleming's left hand rule;	For MP1 and MP3 must refer to what is causing the magnetic field	3
(iii)	MP1. reduce current; MP2. use less powerful magnets/greater separation of magnets;	ACCEPT Use thinner wire, switch off, reduce voltage not 'smaller' magnets allow rotate the wire so that the angle with the magnetic field is smaller	2

Total 8 marks

Question number	Answer	Notes	Marks
10 (a)	Venus;		1
(b)	because it has the largest mass;	ignore references to diameter/size	1
(c) (i)	$\text { density }=\frac{\text { mass }}{\text { volume }} ;$	in words or accepted symbols e.g. $\rho=\mathrm{m} / \mathrm{V}$ condone D for density	1
(ii)	changing diameter to radius; substitution; evaluation; $\left\lvert\, \begin{aligned} & \text { e.g. } \frac{100 \times 10^{24}}{\rho=} \\ & {\left[4 / 3 \times 3.14 \times 25000^{3}\right]} \\ & 1.5 \times 10^{12}\left(\mathrm{~kg} / \mathrm{km}^{3}\right) \end{aligned}\right.$	if diameter used instead of radius (gives 1.9×10^{11}) max 2 -1 for POT error allow answers rounding down to $1.5 \times 10^{12}\left(\mathrm{~kg} / \mathrm{km}^{3}\right)$	3
(d)	change of time into seconds (seen anywhere); use of orbital radius as $150 \times 10^{6} \mathrm{~km}$; evaluation; e.g. $\begin{aligned} & v=\frac{2 \times 3.14 \times\left(150 \times 10^{6}\right)}{365 \times 24 \times 60 \times 60} \\ & 29.9(\mathrm{~km} / \mathrm{s}) \end{aligned}$	no mark for eqn as this is given allow 30 (km/s)	3
(e)	an evaluation to include 3 of: MP1. identifying period as time of orbit; MP2. correct detail of why statement is right/wrong; MP3. correct use of data comparing 2 planets; MP4. period depends on distance from the Sun;	can refer to either mass or diameter of planet for 'size' must name planets must name planets	3

Total 12 marks

Total 6 marks

(iii)	MP1. lead; MP2. idea of best absorber giving lowest count rate; MP3. for Ba-133/can't evaluate using Sr-90 data;	dependent on MP1 dependent on MP1	3
(iv)	any 3 of: MP1. stone absorbs better than \{plastic / wood / paper\} for Sr-90/beta; MP2. stone worst absorber for Ba-133/gamma; MP3. use of data to justify MP1 or MP2; MP4. may not be worse absorber than paper as paper much thinner/not tested for Ba-133;	no mark for ' 1 agree with this conclusion /OWTTE' allow stone best absorber for $\mathrm{Sr}-90$ e.g. the count rate for plastic is about half that of stone for Ba-133	3
(v)	MP1. beta; MP2. it's not alpha because \{alpha would not reach the detector at this distance/ alpha would not go through paper\}; MP3. it's not gamma because gamma is not stopped by metals;	allow 'beta and gamma' allow 'it goes through paper' allow 'it doesn't go through metals' MP2 and MP3 dependent on MP1	3
(vi)	reading would be too high/eq;		1
(vii)	idea that count rate needs to be constant during the investigation/ORA;	allow either idea that would not need to replace the source often/ORA; or idea that shorter halflife has higher activity and therefore is more hazardous;	1

